On a Hybrid Symbolic-Connectionist Approach for Modeling the Kinematic Robot Map - and Benchmarks for Computer Algebra
نویسنده
چکیده
The kinematics model of a robot arm (we are considering open kinematic chains) is described by a corresponding robot map having the configuration space as its domain and the workspace as codomain. In other words, the robot map assigns to every configuration of the joint parameters a unique point of the workspace of the robot arm. We briefly discuss the general introduction of the robot map where the parameters of a translational joint are represented by points of the real line and the parameters of a rotational joint by points of the unit circle in the real plane, respectively. Thus, in general, a concrete joint configuration (point of the configuartion space) is an element of an abelian Lie group being a direct product of some copies of the real line and the unit circle. The position and orientation of the endeffector of a robot arm is represented by an element of the euclidean motion group of real 3-space. The standard problems like the direct kinematics problem, the inverse kinematics problem and the singularity problem can easily be defined. A classical method to establish the robot map is the approach by Denavit-Hartenberg. It leads to a completely symbolic description of the direct kinematics model of an arm and forms the basis for the treatment of the inverse kinematics problem. In order to represent an entire robot arm class it is of basic interest to find a completely symbolic closed form solution of the inverse kinematics problem. Using a two joint robot arm, B.Buchberger demonstrated the principle how to solve this problem with the help of a computer algebra (CA) system applying his Gröbner bases method (Buchberger Algorithm) cf. [Buc70], [Buc85], [Buc87], [BCK88]. Later we made own investigations and constructed a more complex test example (cf. [Pfa97]). We observed that very hard performance problems arose, in the corresponding CA applications, when the degree of freedom of a robot arm increases. An interesting aspect is the fact that these investigations show a natural way how to construct benchmarks for CA. A completely different method to represent the kinematic model of a robot arm is a Connectionist Network approach. The idea is to learn a robot map with the help of a suitably chosen Artificial Neural Network (ANN) using a powerful ANN simulator. The training data
منابع مشابه
A Hybrid Neural Network Approach for Kinematic Modeling of a Novel 6-UPS Parallel Human-Like Mastication Robot
Introduction we aimed to introduce a 6-universal-prismatic-spherical (UPS) parallel mechanism for the human jaw motion and theoretically evaluate its kinematic problem. We proposed a strategy to provide a fast and accurate solution to the kinematic problem. The proposed strategy could accelerate the process of solution-finding for the direct kinematic problem by reducing the number of required ...
متن کاملAn Adaptive-Robust Control Approach for Trajectory Tracking of two 5 DOF Cooperating Robot Manipulators Moving a Rigid Payload
In this paper, a dual system consisting of two 5 DOF (RRRRR) robot manipulators is considered as a cooperative robotic system used to manipulate a rigid payload on a desired trajectory between two desired initial and end positions/orientations. The forward and inverse kinematic problems are first solved for the dual arm system. Then, dynamics of the system and the relations between forces/momen...
متن کاملKinematic and Dynamic Analysis of Tripteron, an Over-constrained 3-DOF Translational Parallel Manipulator, Through Newton-Euler Approach
In this research, as the main contribution, a comprehensive study is carried out on the mathematical modeling and analysis of the inverse kinematics and dynamics of an over-constraint three translational degree-of-freedom parallel manipulator. Due to the inconsistency between the number of equations and unknowns, the problem of obtaining the constraint forces and torques of an over-constraint m...
متن کاملSoccer Goalkeeper Task Modeling and Analysis by Petri Nets
In a robotic soccer team, goalkeeper is an important challenging role, which has different characteristics from the other teammates. This paper proposes a new learning-based behavior model for a soccer goalkeeper robot by using Petri nets. The model focuses on modeling and analyzing, both qualitatively and quantitatively, for the goalkeeper role so that we have a model-based knowledge of the ta...
متن کاملDual Space Control of a Deployable Cable Driven Robot: Wave Based Approach
Known for their lower costs and numerous applications, cable robots are an attractive research field in robotic community. However, considering the fact that they require an accurate installation procedure and calibration routine, they have not yet found their true place in real-world applications. This paper aims to propose a new controller strategy that requires no meticulous calibration and ...
متن کامل